Integration of geochemical mass balance with sediment transport to calculate rates of soil chemical weathering and transport on hillslopes

نویسندگان

  • Kyungsoo Yoo
  • Ronald Amundson
  • Arjun M. Heimsath
  • William E. Dietrich
  • George H. Brimhall
چکیده

[1] We developed a process-oriented hillslope soil mass balance model that integrates chemical and physical processes within hillslope soils. The model explicitly factors that soil chemical weathering at any hillslope position is related to the flux of soil eroded from upslope as well as soil production from underlying bedrock. The model was merged with measurements of soil elemental chemistry and cosmogenic radionuclide-based saprolite-to-soil conversion rates along a 50 m transect of a semiarid granodiorite hillslope in the southeastern Australian highlands. Inverse modeling results in the simultaneous quantification of the rates of soil chemical weathering and soil transport as a function of hillslope position. Soil chemical weathering rates per land surface area systematically varied along the transect from losses of 0.035 kg m 2 yr 1 on the ridge to gains of 0.035 kg m 2 yr 1 at the lowest slope position. The mass loss via soil chemical weathering would have been overestimated by 40% if the impact of soil transport on soil chemistry was ignored. The chemical mobility of elements, combined with biological nutrient demand, controlled the spatial redistribution of individual elements: P and Ca were preferentially retained relative to Si, Al, and Fe within the hillslope base. The calculated soil transport rate is linearly related to the product of soil thickness and slope gradient, instead of slope alone. Soil residence time was determined by calculating the time length for a 3 dimensional box (volume = 1 m surface area soil thickness) to be entirely removed by mass flux of soil transport: 4 ka on the ridge to 0.9 ka at the hillslope base. These soil residence times, combined with soil chemical weathering rates, indicate that a 1 m area of soil loses 1,800 kg via chemical weathering while passing through the upslope portion of the hillslope, but that it regains 90 kg, probably via clay precipitation and biological retention of cations, during its passage through the lower segments of the transect. This study provides a previously unrecognized linkage between physical soil transport and soil chemical weathering that have implications for hillslope evolution as well as biogeochemistry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measurement of long-term denudation rates in carbonate landscapes using in situ-produced 36Cl cosmogenic nuclide

ecent progresses have been made in the quantification of denudation of eroding landscapes and its links with topography. Despite these advances, data is still sparse in carbonate terrain, which covers a significant part of the Earth’s surface. We can now measure in situ-produced cosmogenic nuclides concentrations in various near-surface materials, allowing accurate quantification of the rates o...

متن کامل

Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance

Quantifying long-term rates of chemical weathering and physical erosion is important for understanding the long-term evolution of soils, landscapes, and Earth’s climate. Here we describe how long-term chemical weathering rates can be measured for actively eroding landscapes using cosmogenic nuclides together with a geochemical mass balance of weathered soil and parent rock. We tested this appro...

متن کامل

Geochemical Mass Balance and Elemental Transport during the Weathering of the Black Shale of Shuijingtuo Formation in Northeast Chongqing, China

An understanding of the processes that control the behavior of major elements with respect to weathering profile is essential to calculate the mobility, redistribution, and mass fluxes of elements. Hence, this study aims to determine the geochemical mass balance, strain, elemental correlation, and transport in weathering profiles. We constructed three weathering profiles for the black shale of ...

متن کامل

Uncertainties in Evaluation of the Sediment Transport Rates in Typical Coarse-Bed Rivers in Iran

Flow and sediment transport processes are different and more complex in coarse-bed rivers than in sand-bed rivers. The main goal of the present study is to evaluate different modes of sediment transport using different hydrometric and hydraulic methods, and to address the major uncertainties. Four river reaches were selected as representatives of coarse-bed rivers in the Northwest of Iran. A se...

متن کامل

Relationship between topography, land use and soil moisture in loess hillslopes

The relationship between topography, land use, and topsoil moisture storage is investigated for a small catchment with undulating deep loess hilslopes in the south of the Netherlands. For a period of 10 months, soil moisture profiles have been measured weekly at 15 locations throughout the catchment. A Generalized Additive Model was employed to find relationships between the various factors inf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007